Supponiamo di dover risolvere la disequazione di secondo grado ax2+bx+c <0,

Se il trinomio ax2+bx+c possiede zeri distinti se il D>0 . In questo caso, indicato con x1 e x2 tali zeri il trinomio si scompone come

a(x-x1)(x-x2)

pertanto per risolvere una disequazione si deve studiare il segno del trinomio, per fare ciò occorre confrontare i segni dei tre fattori a, x-x1,x-x2 

Il segno di x-x1 dipende dal valore di x, e si studia imponendo x-x1>0, quindi questo fattore è positivo per x>x1, negativo in caso contrario.

Stesso ragionamento per x-x2.

Il segno del prodotto si studia mediante un grafico che riporta i segni dei singoli fattori

   a>0          a<0                
segno 1            diseq2

Le soluzioni vanno ricercate negli intervalli in cui il segno corrisponde la verso della disequazione, 

Per esempio se a>0 ed il verso è maggiore le soluzioi sono per valori esterni, cioè x<x1 oppure x>x2.

 Se D<0 . Il segno del trinomio è lo stesso del coefficiente a del termine di secondo grado, pertanto se a e il verso della disequazione sono concordi la disequazione è sempre verificata, mai se sono discordi.

Le soluzioni che si  che si ottengono naturalmente sono le stesse xhe si ottengono usando il metodo grafico.

 
We use cookies
Questo Sito utilizza cookie analytics di terze parti al fine di raccogliere informazioni aggregate sul numero degli utenti e su come visitano questo Sito. Se vuoi sapere di più o negare il consenso a tutti o alcuni cookie clicca qui. Se accedi ad un qualunque elemento sottostante o chiudi questo banner, acconsenti all'uso dei cookie.